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ABSTRACT

Recent research has focused on increasing the power
of medical information systems by incorporating time
into the database system. A problem with much of this
research is that it fails to differentiate between histor-
ical time and future time. The concept of bitemporal
lifespan presented in this paper overcomes this defi-
ciency. Bitemporal lifespan supports the concepts of
valid time and transaction time and allows the inte-
gration of past, current, and future information in a
unified model.

The concept of bitemporal lifespan is presented
within the framework of the FExtended Entity-
Relationship model. This model permits the charac-
terization of temporal properties of entities, relation-
ships, and attributes. Bitemporal constraints are de-
fined that must hold between entities forming “isa” hi-
erarchies and between entities and relationships. Fi-
nally, bitemporal extensions are presented for database
query languages in order to provide natural high—level
operators for bitemporal query expressions.

INTRODUCTION

Humans naturally describe data in terms of time.
Medical data are replete with temporal attributes, in-
cluding diagnosis, prognosis, orders, duration of treat-
ment, and appointment schedules. Modeling temporal
reality with relational or object—oriented models leads
to awkward modeling and unfriendly query languages.
What is needed is a database system that uniformly
integrates past, current, and future information in a
single model.

Temporal databases preserve the complete history
of the “Universe of Discourse;” that is, they follow the
non deletion rule of data. This permits users to query
the current state of the database, as well as past states,
and even states that are planned for the future. Clin-
ical patient records systems are a natural application
of temporal databases due to the need for complete re-
call of patient history for clinical, legal, and research
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reasons [4, 9, 10]. Recent years have witnessed an in-
crease in research on temporal databases [8, 12, 14].
(Excellent glossaries on temporal database concepts
can be found in [1, 13]).

A problem with most research in temporal
databases is inability to differentiate between histori-
cal time and future time. This is especially important
for medical information systems where physicians fre-
quently deal with future events such as testing and
treatments, and modifications are frequently made to
patient treatment schedules based on new informa-
tion [9, 10]. Historical time is the time that an event
happened in the real world. Future time is the time an
event is scheduled or predicted to happen in the future.
Campbell et al. [2] observe that expressing time as an
interval is necessary to capture uncertainty in medical
data. However, intervals alone cannot distinguish the
past from the future. The differing semantics of his-
torical time and future time should be reflected in the
data model. The goal of this work is to introduce a
temporal data model that uniformly integrates past,
current, and future information.

A major contribution of this work is the develop-
ment of the concept of Bitemporal Lifespan, which
unites two main temporal concepts: valid time and
transaction time. This new abstraction allows the in-
tegration of past, current, and future information in
a unified model. We correlate bitemporal events with
terms in English grammar to make the relationships
between valid time and transaction time clear. We ex-
tend the Extended Entity-Relationship (EER) model
by using bitemporal lifespans, and we introduce a nat-
ural temporal query language over bitemporal regions.
We believe that it 1s more natural to specify temporal
data and queries in a conceptual, entity—-oriented data
model than in a tuple-oriented, relational data model.

This work is an extension to our previous research
in the area of temporal conceptual models and query
languages [5], where a framework that differentiates
between temporal and non-temporal objects was in-
troduced. Here we propose a temporal EER concep-
tual model that distinguishes between the concepts
of historical time and future time. Our model allows
us to characterize the temporal properties of entities,
relationships, and attributes. We also define tempo-
ral constraints that must hold between entities form-
ing isa hierarchies and between entities and relation-



ships. Finally, we propose bitemporal extensions for
database query languages that provide natural high—
level operators for bitemporal query expressions. For
the sake of familiarity, we present these extensions in
terms of SQL.

TIME ABSTRACTION

Representation of Clock Time

To represent clock time, let T be a countably in-
finite set of totally ordered discrete points in time,
or chronons. A time interval, denoted by [ts,%c], is
defined to be a set of consecutive chronons; that is,
the totally ordered set {ts,ts41,...,te—1,te} CT. We
call ¢, the start time and t. the end time of the time
interval.

Temporal granularity, the distance between two
consecutive chronons, is application—-dependent, and
can be chosen as month, day, hour, minute, second, or
any other suitable time unit. A single discrete chronon
t is represented as an interval [t,t], or simply [t].

For historical databases, the domain of a valid time
attribute is a time interval [to, now], where to repre-
sents the starting time of the database mini-world ap-
plication, and now is the current time, which is contin-
uously expanding. In a (general) temporal database,
the valid time interval expands to cover the range
§t_oo,t ), Where values greater than now represent

uture data. In this case, the reference point ¢y is still
employed, and negative subscripts are used to repre-
sent chronons that precede %o.

Interval representation has an important shortcom-
ing. Since the set of all intervals in 7" is not closed un-
der set operations, Gadia and Yeung [7] suggested the
concept of temporal elements. A temporal element,
denoted as T'E, is a finite union of time intervals, de-
noted by {I1,I>,...,I,}, where I; is an interval in
T. Union, intersection, and difference operations on
temporal elements are easily defined. In addition, set
comparison predicates of two temporal elements using
=, #, D, D, C, and C are also easily defined.

Bitemporal Lifespan

The lifespan of a database object is the time inter-
val over which the object is defined. There are two
types of lifespan, each of which is expressed in terms
of clock time.

1. Valid Time Lifespan: The valid time lifespan
of a database object is a temporal attribute that
defines the clock time interval during which the
object is deemed to be valid within the Universe
of Discourse.

2. Transaction Time Lifespan: The transaction
time lifespan of a database object refers to the
clock time of timestamps associated with updates
to the object by the database application.

Valid time lifespan refers to historical or predicted
events, and can be determined by users of the sys-
tem. Transaction time lifespan is associated with the
recording of those events in clock time, and is deter-
mined solely by the system itself.

A bitemporal lifespan subsumes both valid time
lifespan and transaction time lifespan. We represent
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Figure 1: Various Ways of Combining Valid Time with
Transaction Time

a bitemporal lifespan BL as a finite set of tuples
BL = (VT,TT), where VT is a temporal element
in (—oo,+00) and TT is a time point in [0, now].
A bitemporal chronon, denoted by bec, is a point in
the two—dimensional space VT x TT; that is, bec =
(t1,t2),t1 € VT,ta € TT. Our representation of
bitemporal lifespans allows us to model past, current,
and future information in a unified manner.

Figure 1 shows the relationships between valid time
and transaction time. The line marked “current” is
the line where valid time and transaction time share
the same clock time; that is, an event e was recorded at
the same time the event occurred. To the right of this
line is historical recording, in which an event is entered
into the database after it occurred. To the left of this
line lie predictions of the future, in which an event is
entered into the database before it occurs. It is natu-
ral to describe these relations in terms of grammatical
verb tense. Object A in Figure 1 is a historical fact
recorded after its occurrence, and corresponds to the
perfect tense: “The patient has had a previous preg-
nancy.” Object B represents simple past tense. An
event has just occurred, but is no longer active: “A
drug was administered.” Objects C and D both reflect
present tense, because they indicate events recorded
during the interval in which they are valid. Object
C corresponds to present progressive tense, because
it represents an ongoing activity, such as the course
of a disease: “The patient is being treated for geni-
tal herpes.” Object D corresponds to simple present
tense: “We begin treatment now.” Object E reflects
the future. An event is recorded in the database be-
fore its occurrence: “The patient will return for an
appointment next Tuesday.”

THE BITEMPORAL DATA MODEL

The FER model has been extensively used in
database design applications [3, 6]. In this section,
we introduce extensions to the EER model that cap-
ture temporal data. For brevity, we assume familiarity
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with the basic concepts of the EER model and FER
diagrams [3, 6], so that we may simply specify the
novel concepts of the Bitemporal EER model.

Bitemporal Entities

An entity type is a set of entities of the same type;
that is, entities that share the same attributes. Enti-
ties represent objects in the mini—-world situation that
is being modeled. Each entity type F; has a set of
attributes A;1, Az, ..., Ain, and each attribute A;; is
associated with a domain of values dom(A4;;).

In the bitemporal EER model, each entity e of en-
tity type E is associated with a bitemporal lifespan
BL(e) that defines the time during which e is valid.

Example 1: Figure 2 shows a fragmentary
EER schema for a health care database, which in-
cludes the entity types PATIENT, PHYSICIAN,
and TEST. A particular PATIENT entity may have
a bitemporal lifespan {(51/1/92, 1/2/93],1/25/93),
([11/3/93,2/5/94],2/5/94)}; this means that this pa-
tient was treated during the periods [1/1/92, 1/2}63]
and [11/3/93, 2/5:{94]5 and that this information was
registered in the database at 1/25/93 and 2/5/94.

Bitemporal Assignment

The bitemporal assignment of each attribute A; of
an entity e, denoted as A;}e), is a partial function
Ai(e) : BLSe) — dom(A). (This is similar to the idea
of temporal assignment where the domain of a par-
tial function is a temporal element [GaYe88].) We use
BL(A.-(e)g to denote the subset of BL(e) 1in which
Ai(e) is defined. The value of A; during the time
BL(e) — BL(A;(e)) is undefined.

Example 2: Consider the database described by
the schema in Figure 2. For simplicity, day is used
as the temporal granularity. A particular PATIENT
entity e; and a particular PHYSICIAN entity e; may
have the following bitemporal attribute values:

Name(ey) = { ([9/1/75,now}, 1/15/94) — Jane Doe }

UID(ey) = { {[1/15/94, now],1/15/94) — 123456789
Sez(e1) = { ([9/1/75,now],1/15/94) — Female }
Problem(e;) = { ([1/15/94,1/16/94],1/15/94) —
Suspicion of Pregnancy } ,
[12/1/93,8/1/94],1/16/94) —
Pregnancy }

Name(ez2) = { ([9/1/60, now],1/15/90) — Yaa Dufie }
]], 1/15/90) — 987654321 }

UID(ez) = { ([1/15/90, now

Of fice(ea) = { ([1/15/90, now], 1/15/90) —
BCM #315, BCM #1015} }

Specialty(ez) = { ([1/15/90, now],1/15/90) —
Gynecology }

Bitemporal Attributes and Keys

In our model, each entity has a system-defined,
non-temporal, unique, immutable SURROGATE at-
tribute (or “UID”) whose value is not visible to users.
In addition, several types of bitemporal attributes ex-
ist:

1. Bitemporal Single—Valued Attribute: A
bitemporal single—valued attribute has at most a
single atomic value for each entity at each bitem-
poral instant bc.

Figure 2: A Schema Fragment

2. Bitemporal Multi—Valued Attribute: A
bitemporal multi—valued attribute can have more
than one value for an entity at a given bitempo-
ral instant bc; hence, its domain is the power set
P(V) of some simple domain V. For instance,
in Figure 2, Problem is a multi-valued attribute
since a patient may have more than one problem
concurrently. Office is likewise multi—valued.

3. Bitemporal Composite Attribute: A bitem-
poral composite attribute is a list of several com-
ponent bitemporal attributes, and its value for
each entity at bitemporal instant bc is a concate-
nation of the values of its components.

4. Key Attribute: A (simple or composite) at-
tribute A is a key attribute of an entity type E if
at any bitemporal instant bc, no two entities in E
have the same value for A. We allow the update
of a key attribute since each entity is uniquely
identified by its SURROGATE. For instance, the
attribute UID of entity Type PATIENT in Fig-
ure 2 is a key attribute since it uniquely identifies
a particular patient.

Bitemporal Relationships

A relationship type R of degree n has n partici-
pating entity types E1, Es, ..., E,. Each relationshi
instance r in R is an n-tuple r = (el,ez,...,e,j
where each e; € F;. In our model, each relation-
ship instance r is associated with a bitemporal lifespan
BL(r). The constraint is that BL(r) must be a subset
of the intersection of the bitemporal lifespans of the
entities e;, ez, ..., e, that participate in r. That is,
BL(r) C (BL(e1) N BL(ez) N ...N BL(en)). This is
because for the relationship instance to exist at some
bitemporal instant bc, all the entities participating in
that relationship instance must also exist at be.

Relationship attributes are treated similarly to en-
tity attributes; the bitemporal value A;(r) of each
simple attribute A; of r is a partial function (bitem-
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poral assignment) A;(r) : BL(r) — dom(A;) and
BL(A;(r)) C BL(r).

Example 3: In Figure 2, the relationship type
HAS_APPT represents the fact that a patient has
an appointment with a physician; the relationship
type ORDERS represents the fact that a physician
orders a test for a patient; and the relationship
type UNDERGOES represents the fact that a pa-
tient undergoes a test. To Example 2, let us add a
HAS_APPT instance r between the PATIENT en-
tity e; and the PHYSICIAN entity e, with BL(r) =
3([)1/15/94], 1/15/94),([1/16/94],1/15/94)}; this in-

icates that the patient had a walk-in appointment
on 1/15/94 and at that time a second visit was sched-
uled for 1/16/94 to discuss test results.

Bitemporal Hierarchies

Subclasses can be used to represent generalization
and specialization hierarchies and lattices [6]. Mem-
bership of entities in a subclass can either be specified
via a predicate or categorized explicitly by the user.
In the former case, we have a predicate-defined sub-
class, where each entity in the superclass that satisfies
a defining predicate will be a member of the subclass.
In the latter case, the user ezplicitly partitions entities
from the superclass into categorical subclasses.

An entity e of a superclass C will belong to a
predicate—defined subclass SC at all bitemporal in-
stants where the predicate evaluates to true. For a
user defined subclass, the user will specify the bitem-
poral instants at which an entity e belonging to the
superclass C will also belong to the subclass SC. In
either case, the entity will have a bitemporal lifespan
BL(e/SC) that specifies the bitemporal instants at
which it is a member of the subclass SC. The con-
straint BL(e/SC) C BL(e/C) must always hold.

Example 4: Figure 2 shows an example of three
subclasses: WBG (Whole Blood Glucose), SG (Serum
Glucose), and WBC (White Blood Count) of the
TEST entity type. The symbol d in Figure 2 indi-
cates that the subclasses WBG, SG, and WBC are
always bitemporally disjoint.

THE BITEMPORAL ALGEBRA
To allow for bitemporal constructs in queries, we
define the concepts of bitemporal boolean expressions,
bitemporal selection conditions, and bitemporal pro-
Jections. :

Bitemporal Boolean Expression
A bitemporal boolean expression is a conditional
expression on the attributes and relationships of an
entity. A bitemporal boolean condition ¢;, when ap-
plied to an entity e at a given transaction time point
t, evaluates to { TRUE, FALSE, UNKNOWN }.
Example 5: The boolean expression (Problem =
“Pregnancy”);/16/94 for the PATIENT entity e; given
in Example 2 results in:

{[12/1/93,8/1/94] — TRUE,
[9/1/75,11/30/93] U [8/2/94, now] — FALSE,
other-times - UNKNOWN}

However, (Problem = “Pregnancy”);/y/94 results in:

{[9/1/75,now] - FALSE,
other-times - UNKNOW N}

True_Time

The true_time of a boolean expression [c;] at a
given transaction time point ¢, evaluates to a temporal
element for each entity e. The temporal element is
the time for which the condition is TRUE for e.

Example 6: The true_time of the boolean condi-
tion in example 5 evaluated at the transaction time
point 1/16/94 is { [12/1/93,8/1/94] }.
Bitemporal Selection Condition

A bitemporal selection condition compares two
true_time expressions (i.e. temporal elements) using
the set comparison operators =, #, D, D, C, and C.
When applied to an entity type, it evaluates to those
entities that satisfy the bitemporal selection condition.

Example 7: Consider the following bitemporal se-
lection condition applied to the PATIENT entity type
of Figure 2:

[ (HAS_APPT = “Yaa Dufie”);;15/94]
2 [1/1/94, now)

This selects the entire history, as registered in the
database on 1/15/94, of all patients who had appoint-
ments with Yaa Dufie between 1/1/94 and the present.

Bitemporal Projection

A bitemporal projection TE; of a bitemporal entity
e over a temporal element TF at transaction time ¢, is
evaluated in two steps: (1) rollback to the transaction
time t and (2) restrict the data displayed for the entity
e to the temporal element TE. (This operation is
similar to the when operator introduced in [GaYe88]
for clock time periods.)

Example 8: The bitemporal projection of bitem-
poral PATIENT entity e; of Example 2 over the
temporal element {[2/15/94, now]} at the transaction
time point 2/15/94 results in:

Name(e;) = { [2/15/94, now] — Jane Doe }
UID(e;) = { [2/15/94, now] — 123456789 }
Sex(e1) = { [2/15/94, now] — Female }
Problem(e;) = { [2/15/94, now] — {Pregnancy} }

THE BITEMPORAL QUERY
LANGUAGE

In non-temporal databases, a query will typically
select certain entities based on boolean predicates that
involve attribute values of the entity and of related en-
tities, and then display certain attributes or relation-
ships of each of the selected entities. In a bitemporal
database, selection criteria may be based not only on
attribute values but also on bitemporal conditions. In
addition, once an entity is selected, a user may wish to
display the complete history (bitemporal assignment)
of some of its attributes or relationships, or to limit
the displayed values to a certain time interval.

Our bitemporal algebra can be used to specify tem-
poral queries by extending the SQL database lan-
guage EG] The bitemporal extensions are illustrated
through examples (A number of important bitempo-
ral query constructs, such as bitemporal aggregates,
are omitted for brevity).

Example 9: Consider the query to retrieve as of
1/1/92 (transaction time) the name and office number
of all pediatricians in the clinic on 1/1/88 (valid time):
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SELECT ( Name, Office) : [1/1/88]1/1/02

FROM PHYSICIAN

WHERE [(PHYSICIAN.Specialty = “Pediatric” ), n /92]
> [1/1/88]

It is important to distinguish between the effects of
the bitemporal construct used in the SELECT-clause
and that in the WHERE-clause. The WHERE-clause
evaluates entities based on the state of the database on
1/1/92. It is still necessary to specify the bitemporal
projection [1/1/88]1/1/92 again in the SELECT-clause
in order to obtain the information registered on 1/1/92
rather than the current information.

Example 10: Consider the query to retrieve the
current name and office number of all physicians who

saw the patient “Jon Smith” during the time pe-
riod &1 /1/88,4/5/92] as registered in the database on
5/5/92:

SELECT (Name, Office)

FROM PHYSICIAN

WHERE [(PHYSICIAN.HAS_ APPT.PATIENT.Name =
“Jon Smith”)5/5/92] 2 [1/1/88, 4/5/92]

To deal with bitemporal data, we need bitem-
poral query functions not found in traditional
databases [11]. The functions FI (first instant) and
LI (last instant) return the first and last time points,
respectively, when applied to a temporal element.
Other functions we will use are the VTIME and
TTIME functions in the SELECT clause, which re-
trieve the valid time and transaction time of each se-
lected entity respectively.

Example 11: To retrieve the interval during which
“Yaa Dufie” was on the staff as of 1/1/94, we write:

SELECT (VTIME)
FROM PHYSICIAN
WHERE PHYSICIAN.Name = “Yaa Dufie”

CONCLUSIONS

In this paper, we presented a bitemporal extension
to the EER model that uniformly supports past, cur-
rent, and future times. The concept of bitemporal
lifespan of an entity or a relationship instance was de-
fined. The bitemporal properties of entities, relation-
ships, and attributes were characterized. Bitemporal
constraints that must hold between entities forming
isa hierarchies as well as between entities and relation-
ships were defined. We also presented the concepts of
bitemporal selection conditions and bitemporal pro-
jections, and showed how these bitemporal constructs
can be used to extend the SQL database language.

We believe that the use of the bitemporal E'R model
will provide greater power in the expression of medical
queries. We hope to prototype a bitemporal DBMS
that addresses important implementation issues like
bitemporal indexing structures and query optimiza-
tion. However, temporal databases will not become
ubiquitous unless they are able to provide human-
centric user interfaces over terabytes of temporal data.
Needless to say, this is an immensely challenging area
worth exploring.
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